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Abstract
In regions of water scarcity, mapping individual crops,
cropping intensities and irrigation can contribute signifi-
cantly to understanding agricultural water use. But such
mapping is challenging in landscapes dominated by
small-scale traditional agricultural land holdings with high
spatial and temporal heterogeneity. Here, we assessed the
benefit of using multi-temporal 24 m resolution LISS-III
imagery to characterize cropping systems in the Mala-
prabha basin of southern India. We used hierarchical
stacked supervised classification to create three increas-
ingly detailed maps showing: (a) single rainfed paddy
rice versus continuously irrigated sugarcane, (b) irrigated
versus rainfed areas, and (c) multiple cropping. Although
increasing detail was accompanied by decreasing overall
accuracies (89 percent, 74.6 percent and 60.1 percent
respectively), using multi-temporal imagery out-performed
single imagery alone in all cases. Results also led to higher
estimates of total (69.8 percent) and irrigated (34.7 percent)
cropland than previous single-imagery studies and census
data, revealing the high uncertainty in crop estimates in
this region.

Mapping Cr op T ypes, Irrigated Ar eas, and
Cropping Intensities in Heter ogeneous

Landscapes of Souther n India Using
Multi-Temporal Medium-Resolution
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Introduction
Agricultural land, including crops and pastures, currently
covers a third of the world’s land surface (Ramankutty et al.,
2008). This has led to dramatic changes in land cover (e.g.,
deforestation) in many regions of the world. But in areas
with a long tradition of agriculture, such as South Asia, the
most significant process may be fine-scale intensification in
agricultural land use (Ellis et al., 2009), including: changes
in crop type, shortening of crop rotations and increased
multiple cropping, increased irrigation and fertilizer inputs,
and changes in tillage practices. In water-limited regions,
such changes are often driven by new technologies that
enable groundwater exploitation, as well as expansions in
the surface irrigation network. These intensification
processes can increase local and downstream water short-
ages, reduce biodiversity, and alter biogeochemical cycles
thereby creating problems of nutrient excess or shortage
(Matson et al., 1997; Tilman et al., 2002; Keys and
McConnell, 2005).

Detecting and estimating fine-scale changes in agricul-
tural land uses is therefore important from a global as well
as regional and local perspective. In particular, estimating
irrigated areas, cropping intensities, and areas of crops with
different water requirements can be a significant contribu-
tion to water resource governance. This is especially true in
regions where ground-based data collection systems are
weak, inaccurate, and aggregated by administrative rather
than hydrological boundaries. Such data can also contribute
to the debate on water use efficiencies in agriculture
(Vaidyanathan and Sivasubramaniyan, 2004).

Mapping agricultural land cover using remote sensing is
challenging in regions with high spatial and temporal hetero-
geneity, characteristic of areas dominated by small-scale
traditional agricultural holdings such as the densely populated
rural landscapes of India (Pax-Lenney and Woodcock, 1997).
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Diversity in crop types, small field sizes, and complex 
intra- and inter-annual crop rotations (Francis, 1986) can
make it difficult to select imagery of sufficiently fine spatial
and temporal resolutions to capture the detail on the ground
while mapping large extents. Temporal availability of data in
the tropics can be restricted by frequent cloud cover, possibly
obscuring an entire growing season in monsoonal regions
(Murakami et al., 2001; Ippoliti-Ramilo et al., 2003; 
Diuk-Wasser et al., 2004). The spectral similarity of certain
crops can also make classification based on a single moderate
resolution image very difficult (Jewell, 1989; Rao, 2008).

Various methods have been employed to try to over-
come these challenges. High resolution, hyperspectral, and
radar data have been used to address issues of spatial
complexity (Peña-Barragán et al., 2008), spectral similarities
(Rao, 2008), and cloud cover (Panigrahy et al., 2005). Time-
series MODIS data have been used to distinguish between
crops with similar spectral signatures, between irrigated and
rainfed areas, and to identify multiple crop rotations (Xiao
et al., 2005; Biggs et al., 2006; Xavier et al., 2006). Crop
classification can also be improved using multi-temporal
imagery to create a time profile of vegetation indices (e.g.,
NDVI) (Murakami et al., 2001; Ippoliti-Ramilo et al., 2003),
or for analysis as a multi-date stacked image (Oetter
et al., 2001; Murthy et al., 2003). Relatively few studies,
however, have focused on the problem of mapping irrigated
lands, especially in the complex agricultural landscapes of
south Asia (but see research by Thenkabail and colleagues
(e.g., Thenkabail et al., 2007; Thenkabail et al., 2009;
Velpuri et al., 2009) who have pioneered efforts at mapping
irrigated lands in this region).

In this study, we tested the benefit of using multi-
temporal moderate resolution (~24 m) imagery to characterize
cropping systems (including multiple cropping and irrigation)
in the Malaprabha basin of southern India (Figure 1). This
basin illustrates well the multiple challenges of using remote
sensing to map agricultural land cover in an intensively
cultivated and dynamic landscape. Spatial heterogeneity is

high, with average household land holdings of 2 to 20
individual fields ranging in size from 500 to 5,000 m2.
Temporal heterogeneity is also high, due to sequential
cropping on individual fields as well as asynchronous
cropping calendars between fields (Figure 2). The objectives
of the study were: (a) to distinguish two important cropping
practices in the region: single rainfed paddy rice versus
continuously irrigated sugarcane, (b) to distinguish irrigated
from rainfed areas, and (c) to identify areas of multiple
cropping. We analyzed multi-temporal IRS LISS III imagery
(24 m resolution) using a step-wise hierarchical stacked
supervised classification method. We compared accuracies
at different levels of thematic resolution and examined the
inter-temporal variations in spectral signature to highlight
the sources of variation and similarity. Finally, to examine
the benefits of our approach, we also compared our work
with similar work conducted by researchers using single
imagery data.

Methods
Study Area
The study area encompasses the entire catchment of the
Malaprabha River in the Belgaum district of the state of
Karnataka in southern India, extending approximately
100 km from the headwaters in the Western Ghats to
the Navilutheertha dam, covering an area of 2,202 km2

(Figure 1). Elevation ranges from 1,018 to 616 m. The
climate of the study area is dominated by a monsoon season
from June through October. Rainfall is spatially variable,
ranging from � 1,700 mm in the west to 600 mm around the
reservoir in the east.

Cultivated areas make up approximately two-thirds of
the total land area in Belgaum district (Census of India,
2001). The district is densely populated (314 people/km2 in
2001). Total agricultural land has remained stable since the
1970’s but agricultural intensification and fragmentation
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Figure 1. Map of the study area showing the Malaprabha basin (main map) in
the state of Karnataka, India.
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Figure 2. Cropping calendar for the Malaprabha basin, showing the agricultural classes
used in this study with some examples of the most common crops for each class and
season.

have increased. Double cropping increased from �2 percent
of total sown area in 1970 to 33 percent in 2000, and
average land holdings decreased from 3.26 to �2 ha (Datanet
India, 2008). From 1971 to 2004, subsistence dryland crops
(e.g., millet and sorghum) declined while cash crops (e.g.,
soybeans, maize, and sugarcane) increased (Datanet India
2008). Increased irrigation in the region was driven by the
building of the Navilutheertha dam, which provided irriga-
tion downstream and also made water available upstream
through lift irrigation projects. There was also a rise in the
number of deep borewells used for irrigation in the western
part of region (Wallach, 1984; Datanet India, 2008). The
majority of fields are cropped during the monsoon (kharif,
June to November) season, and if double cropped, then
planted either in the winter (rabi, November to February) or
the summer (February to May) (Figure 2).

Data Description
Linear Imaging and Self to Scanning Sensor (LISS-III) IRS
satellite imagery from RESOURCESAT-1 (IRS-P6) was used in
this study. Imagery was 23.5 m resolution and included four
bands: green (0.52 to 0.59 �m), red (0.62 to 0.68 �m), near
infrared (0.77 to 0.86 �m), and mid-infrared (1.55 to
1.70 �m). The study area straddled two paths of the sensor
(96/62 and 97/62). Usable imagery was not available during
the peak monsoon growth period (June to October) because
of continuous cloud cover. We therefore chose images from
the end of the monsoon season [22 November (Path/Row
96/62) and 29 (97/62)], winter [14 January (96/62) and
19 January (97/62)], and summer [03 March (96/62) and
08 March (97/62)] in 2007.

Image Preprocessing
Images were geometrically and atmospherically corrected
prior to analysis. We georectified the images in ArcGIS©

using a first order polynomial equation fit to ground control
points obtained from Survey of India topographic maps
(1976; 1:50 000 scale) and GPS readings in the field. RMS
error for all geo-rectifications was 13 to 21 m (less than one
pixel). The imagery was converted to radiance in units of

W/(cm2 • nm • sr) using the scaling factors provided with
the data. Atmospheric correction was then performed using
the FLAASH module in ENVI ver. 4.7, which uses the
MODTRAN-4 radiative transfer model (ITT Visual Information
Systems, 2007). The model corrected for Rayleigh and
aerosol scattering and for general haze (visibility) across all
bands for each image.

Classification
Because we were principally interested in mapping agricul-
ture, we first masked out most other cover types. Cloud cover
and shadows were masked following atmospheric correction
and prior to any classification. Water bodies were masked out
using supervised classification with unambiguous reservoirs
and rivers as training sites. Village areas were masked out
using the “built-up” land cover class of the Karnataka State
Remote Sensing Applications Center (KSRSAC) 2006 land-cover
map (KSRSAC, unpublished data, 2006). The KSRSAC map
was developed using merged PAN�LISS3 data, and therefore
has a high spatial resolution of 6 m. To mask forest areas, we
conducted a supervised classification using training sites
derived from both field work and the KSRSAC map to map
forest land cover. This forest cover map was then overlaid
with the KSRSAC map. Areas designated as forest in both maps
were classified as such, while areas classified as forest in
only one map were classified as such only after confirmation
through manual image inspection. All forested areas were
masked out, including degraded forest areas, scrubland, and
tree groves. Grasslands were difficult to separate at this stage
and hence were not masked out.

Between December 2007 and July 2008, we interviewed
farmers in their fields and recorded the crop type and use of
irrigation in each field for each month from January to
December 2007. We took GPS coordinates of ground-data (GD)
points in every field that was larger than 40 m � 40 m
(n = 622) in the largest possible area of homogenous crop
cover. The GD points were used to designate GD polygons of
homogeneous land-cover/land-use. To do so, we overlaid
each GD point on the IRS images and manually designated a
polygon of at least four pixels around each point that was
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located in an area of homogenous spectral signature for each
of the three images. Where this was not easily accomplished
(because of small field sizes and highly variable field cover),
we overlaid the GD point on high resolution imagery in
Google Earth™ (2008 imagery) and drew a polygon around
each point based on clearly visible field boundaries.

We used a stacked hierarchical procedure to create three
nested levels of classification (Figure 3). All four bands from
each of the three image dates were “stacked” (combined and
analyzed as one group rather than classifying each image
separately thereby incorporating data from multiple time
periods), and a Gaussian maximum likelihood classifier was
used to conduct three supervised classifications. Classifica-
tion was performed in three steps, with each step subdivid-
ing classes from the previous step to create a nested
classification. We first produced a three-class map which
distinguished a single crop of rainfed paddy rice (Single
Rainfed (Paddy)) and full-year irrigated crops (Full-year
Irrigated (Mostly Sugarcane)) from all other agricultural land
(Objective 1). We then derived a four-class map (again using
supervised classification) by sub-dividing the other agricul-
tural land into irrigated and rainfed classes (Objective 2).
Finally, we created a nine-class map by further sub-dividing
the irrigated class into two double-cropped types (Double
Irrigated (Paddy/Other) and Double Irrigated (Other/Other))
and the rainfed class into five more specific classes,
including two double-cropped types (Double Rainfed
(Paddy/Other) and Double Rainfed (Other/Other)), a single
crop type (Single Rainfed (Other)), a perennial type
(Perennial Rainfed (Orchard)), and Grassland. In all cases,
the “Other” refers to a range of different crops that are
frequently cultivated in rotation; examples are shown in
Figure 2. The classes and hierarchical structure were
developed by grouping the GD points into natural groupings
based on farmer interviews. Some GD polygons were deleted
based on spectral signatures to decrease variability due to
uncertainty in the interview data and variability in planting
dates of individual crops. The spectral signature of each
polygon was compared against the average spectral signature
of its group (Figure 4, Figure 5, and Figure 6) and outliers
were removed. A total of 341 GD polygons were used for
training and 90 for accuracy assessment (Figure 1; Table 1)

using the kappa statistic (Story and Congalton, 1986;
Congalton and Green, 2009). Accuracy was measured and
reported on a pixel (rather than polygon) basis to account
for edge effects due to small field size.

The spectral signatures of the nine classes were inter-
compared using the Jeffries-Matusita (J-M) distance, or
separability index, which ranges from 0 (identical classes) to
2 (complete separation of classes) (Online Supplement,
http://www.geog.mcgill.ca/~nramankutty/Heller_PERS2012_
OnlineSupplement.pdf) to determine how well the individ-
ual classes were separated in our classification procedure.
Values over 1.9 generally indicate good separation, values
between 1.0 to 1.9 indicate moderate separation, and values
under 1.0 indicate that classes could be reasonably grouped
together (Richards and Jia 2006). J-M was calculated between
all classes for each image date (four bands each) as well as
for a combination of all image dates (12 bands).

Postprocessing and Analysis
The two images covering the study area were classified
separately and subsequently mosaicked in order to minimize
bidirectional reflectance and atmospheric effects that could
not be corrected during preprocessing of data. Because of
clouds in the November image of the east side of the basin,
the western set of images was used for all areas of overlap.
Accuracy assessments were performed on the mosaicked
image. We compared the results of our study to two other
datasets: (a) Census of India, 2001 (Part-B: Village amenities
directory, including five-fold land-use data), and (b) a land-
cover classification for the Krishna River basin by Velpuri
et al. (2009) at the International Water Management Institute
(IWMI). IWMI used unsupervised classification on 30 m
resolution Landsat ETM� imagery (circa. 2000) from a single
time period (main cropping season, Kharif). We clipped
their final map to conform to our study area boundaries, and
combined their 19 classes to best match our classes.

Results
The hierarchical classification resulted in three progressively
more detailed maps, but the increase in thematic resolution
was accompanied by a decrease in map accuracy.
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Figure 3. Hierarchical classification of land-use/cover types mapped in the analysis.
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Accuracy of Classifications
The first objective of this study was to distinguish two key
crop types: a single crop of rainfed paddy rice from irri-
gated full-year crops such as sugarcane (Figures 3 and 4).
This three-class map (Plate 1) yielded an overall accuracy of
89 percent with a kappa index of 0.81 (Table 2), with little
confusion between the two classes. The J-M index shows
that the separability of the two classes was enhanced by the
use of three image dates (J-M = 1.99 for 12-band analysis
versus 1.51 to 1.92 using imagery from only one time
period) (Online Supplement: http://www.geog.mcgill.ca/
~nramankutty/Heller_PERS2012_OnlineSupplement.pdf),
although the November imagery alone was sufficient to
separate the classes on the western side of the basin. Both
Single Rainfed (Paddy) and Full-year Irrigated (Mostly
Sugarcane) showed higher producer’s accuracies (95.0 per-
cent and 89.4 percent) than user’s accuracy (82.6 percent
and 84.0 percent). This indicates that some areas in the
Other agriculture class have been misclassified, likely due
to the high variability in cropping calendars for different
crops, some of which coincide with paddy and sugarcane
(Table 2).

The second objective was to further distinguish irrigated
from rainfed areas (Figure 3). This four-class map yielded an
overall accuracy of 74.6 percent and a kappa coefficient of
0.63 (Table 3). The user’s and producer’s accuracies of the
Other Rainfed class were high (83.4 percent and 72.8

percent, respectively), with most of the misclassified pixels
originating from the Other Irrigated class. Accuracies of the
Other Irrigated class, however, were low (19.8 percent and
23.5 percent), with frequent confusion with Other Rainfed.
Both the Other Irrigated and Other Rainfed classes show
high spectral variability for all three image dates (Figure 5).

The third objective was to determine the extent of
multiple cropping within the basin (Figures 3 and 6). The
overall accuracy of the nine-class map was 60.1 percent
with a kappa coefficient of 0.52 (Table 4). Highest user’s and
producer’s accuracy in new classes within the nine-class
map were for Double Rainfed (Other/Other) (70.2 percent
and 57.5 percent, respectively) and Grassland (64.6 percent
and 38.1 percent). Accuracy for other classes was less than
30 percent. J-M indices showed that using three images
resulted in substantially better separability as compared to
using only one image (Online Supplement: http://www.geog.
mcgill.ca/~nramankutty/Heller_PERS2012_Online
Supplement.pdf), though even the use of three images was
insufficient to consistently separate all classes. Double
Irrigated (Other/Other) and Double Rainfed (Other/Other)
had particularly low separability (J-M = 1.2 to 1.7).

Estimates of Crop Types and Irrigated Area
Given the above accuracies, we relied primarily on the
results of the four-class map to estimate the area under diff-
erent agricultural classes. Overall, net cultivated area, which
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TABLE 1. NUMBER OF GROUND DATA POLYGONS AND CORRESPONDING NUMBER OF PIXELS USED FOR
TRAINING AND ACCURACY ASSESSMENT

Training Accuracy

Polygons Pixels Polygons Pixels

Single Rainfed (Paddy) 49 784 6 140
Full-year Irrigated (Mostly Sugarcane) 111 1522 27 340
Double Irrigated (Paddy/Other) 24 141 7 40
Double Irrigated (Other/Other) 24 258 11 96
Single Rainfed (Other) 8 104 5 31
Double Rainfed (Paddy/Other) 17 128 3 21
Double Rainfed (Other/Other) 72 684 18 233
Perennial Rainfed (Orchard) 19 310 4 45
Grassland 17 747 9 215
Total 341 4678 90 1161

Figure 4. Average spectral signatures (showing one standard deviation on either
side of the mean) of the ground data points for the three agricultural classes at
each imagery date. SR – single rainfed; FI – Full-year irrigated.
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includes all agricultural land covers (not including grassland)
made up 69.9 percent of the total land area (Table 5 and
Table 6). Single Rainfed (Paddy) made up 8.1 percent of the
total area (Table 5) and occurred mostly in the western part
of the study area (Plate 1a). Full-year Irrigated (Mostly
sugarcane) crops accounted for 16.1 percent and were
located primarily in the central region and along the
reservoir in the east. Total irrigated area (Full-year Irrigated
(Mostly Sugarcane) plus Other Irrigated) occupied 34.8
percent of the total study area (Table 5 and Table 6). Other
Irrigated occurred in the central and western parts of the

study area typically somewhat further from the reservoir
than the Full-year Irrigated (Mostly Sugarcane) class
(Plate 1b). Total rainfed area (Single Rainfed (Paddy) plus
Other Rainfed, not including grassland) encompassed
35.1 percent of the total area, with Other Rainfed occurring
throughout the study area along the outer boundaries, furthest
away from the reservoir. Although estimates based on the
nine-class map should be interpreted carefully given the high
uncertainties, approximately 36.5 percent of the basin was
double cropped, 16.1 percent was under full-year crops and a
further 7.3 percent under perennial crops (Table 6). Total area
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Plate 1. Land cover maps of the Malaprabha Basin showing: (a) three-class, 
(b) four-class, and (c) nine-class results of the hierarchical multi-temporal remote sensing
analysis.

(a)

(b)

(c)
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planted in paddy rice (i.e., sum of Single Rainfed (Paddy),
Double Rainfed (Paddy/Other) and Double Irrigated
(Paddy/Other)) was 18.5 percent, sugarcane was 16.1 percent,
and other crops occupied 35.3 percent of the basin.

Comparison of our results with other datasets shows
that our estimate of total agricultural area (70 percent) in the
Malaprabha basin is much higher than that of IWMI (43 per-
cent; Velpuri et al., 2009) but similar to the official census
statistics (64 percent to 69 percent (Census of India, 2001))
(Table 7; Plate 2). Our study suggests that the total culti-
vated area was roughly split between rainfed (35.1 percent
of basin) and irrigated areas (34.7 percent). The census and
IWMI suggest more rainfed than irrigated areas, with both
reporting that ~15 percent to 16 percent of the basin was
irrigated in 2000/2001, but disagreeing on the extent of
rainfed cropland (and therefore total cropland). Compared to
IWMI, we estimated 2.2 times greater irrigated croplands and
1.3 times greater rainfed areas. Comparisons of individual
crop types and single versus multiple crops were difficult
due to differences in land-cover categories. For other land
covers, we estimated much lower areas of forests and
grasslands than IWMI.

Discussion
The results of this study suggest that multi-temporal/multi-
spectral remote sensing approaches are useful for mapping
land cover across broad regions of high spatial and temporal
complexity with multiple cropping and mixed irrigation.
Although an increase in thematic complexity in classifica-
tion was accompanied by a decrease in map accuracy, the
multi-temporal approach proved useful, relative to using a
single-date image alone, for accurate classification of major
crop types and land use practices.

The Value of Multi-temporal Imagery
In all cases, combining late Monsoon (November), winter
(January), and summer (March) imagery led to higher separa-
bility of agricultural classes than using a single image alone.

Imagery from the main cropping season (e.g., November)
is typically used for single image land-cover classifications
in this region. In our case, using November imagery alone
was only sufficient to clearly separate (J-M index � 1.9) land
covers in the three-class map (Single Rainfed (Paddy) from
Full-year Irrigated (Mostly Sugarcane)) on the west side of the
basin, although multi-temporal analysis was superior (had a
higher J-M Index) even in this instance. March and January
single images were not sufficient even for the three-class map.
Poor separation in the January images for the Full-year
Irrigated (Mostly Sugarcane) class was likely due to the
variability within the class during this time, as January is a
time of transition for sugarcane when many fields have
recently been harvested, burned or replanted.

Distinguishing among the more detailed land covers in
the four- and nine-class maps was dependent on having the
multi-temporal data. For example, when distinguishing
Double Irrigated (Other/Other) from the two Double Rainfed
classes, J-M indices increased from 0.4 to 0.9 using November
images alone to 1.3 to 1.8 with the multi-temporal data.
Although the Double Irrigated (Other/Other) class still had
lower than expected accuracy (see discussion below), using
multi-temporal data is one way to enhance its separability.
Similarly, separability of the grassland type from other types
was substantially better using multi-temporal imagery than
the November image alone. For all classes, spectral signa-
tures suggest that the largest differences among crop types
were in the mid-infrared band, which is sensitive to water
content in plants. Using multi-temporal data thus takes
advantage of differing water availability across the seasons
combined with individual plant water use characteristics.

Mapping Irrigation
The three-class analysis showed with high accuracy that
irrigated sugarcane covers twice the area of single-cropped
rainfed paddy (16 percent versus 8 percent), while the four-
class analysis provided an equally good estimate of total
rainfed area (35 percent) and much less accurate estimate of
total irrigated area (35 percent). From the results of the
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TABLE 2. CONFUSION MATRIX FOR THREE-CLASS MAP

Ground Data (# pixels)

Class Single Rainfed (Paddy) Full-year Irrigated Other User’s accuracy (%)
(Mostly sugarcane)

Single Rainfed (Paddy) 133 1 27 82.6
Full-year Irrigated
(Mostly Sugarcane) 0 304 58 84.0
Other 7 35 596 93.4
Producer’s
accuracy (%) 95.0 89.4 87.5 Overall accuracy: 89.0%

Kappa coefficient: 0.807

TABLE 3. CONFUSION MATRIX FOR FOUR-CLASS MAP

Ground Data (# pixels)

Class Single Rainfed Full-year Irrigated Other Other User’s 
(Paddy) (Mostly Sugarcane) Irrigated Rainfed accuracy (%)

Single Rainfed (Paddy) 133 1 15 12 82.6
Full-year Irrigated (Mostly Sugarcane) 0 304 28 30 84.0
Other Irrigated 0 24 32 106 19.8
Other Rainfed 7 11 61 397 83.4
Producer’s accuracy (%) 95.0 89.4 23.5 72.8 Overall accuracy: 74.6%

Kappa Co-efficient: 0.628
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nine-class map, it is clear that the loss of accuracy in this
irrigated category was primarily due to confusion between
the Double Irrigated (Other/Other) and Double Rainfed
(Other/Other) and, to a lesser degree, Double Rainfed
(Paddy/Other). There are several reasons for this. First, even
in the field, the distinction between rainfed and irrigated is
often more of a continuum than the binary classes assigned
here. While irrigated crops such as sugarcane require
dedicated irrigation systems, our fieldwork showed that
farmers can often coax other crops through the dry season
by supplementing a primarily rainfed crop with small
amounts of emergency manual watering. As such, Double
Rainfed types frequently include small amounts of manual
irrigation. Similarly, Double Irrigated is likely to be prima-
rily rainfed during the monsoon season. As such, distin-
guishing the categories is difficult even with multi-temporal
data. From a water-use perspective, it may be more relevant
in future land cover classifications to focus on single versus
double and multiple cropping systems using multi-temporal
data to estimate total water use in a region.

Despite these issues, the results suggest a substantial
increase in irrigated crops in the region. Even if one assumes
a more conservative figure of 25 percent to 30 percent
irrigated, equivalent to 36 percent to 43 percent of net
cropped area, this amounts to a dramatic increase from the
11 percent of the net cropped area which was irrigated in
1971 (Census 1971 data). Field visits indicated that this
expansion of irrigation has happened due to both a rapid
spread of groundwater pumping (borewells) and also direct
lift irrigation from the Malaprabha or the backwaters of the
Naviluteertha reservoir. The consequence of this dramatic
increase in upstream irrigation has been a decline in inflows
into the reservoir, resulting in significant water shortages
for both urban users (such as the town of Bailhongal) as
well as farmers served by the reservoir (Badiger and Resh-
midevi, 2010).

Intercomparison with Other Data Sets
For comparison of total cultivated area, we used the census
estimates (Census of India, 2001) as a baseline. Census data,
which are collected every 10 years, are a comprehensive
assessment painstakingly compiled from individual village
accountants. Our estimate of total cultivated area in 2007
(70 percent) is similar to the official census statistics
(64 percent to 69 percent in 2001 (Census of India, 2001)).
IWMI’s estimate (Velpuri et al., 2009) of 43 percent total
cultivated area is significantly lower. It is difficult to gauge
why IWMI might underestimate total cultivated area; it could
be due to their effort being focused on mapping the entire
Krishna River basin, with fewer ground data in the smaller
Malaprabha River basin.

When it comes to irrigated versus rainfed cultivated
areas, it is well known that the census irrigated area esti-
mates are typically underestimates of the real area because
farmers have incentive to underreport irrigation because of
the higher taxes on irrigated land as well as the use of
clandestine lift irrigation practices (Vaidyanathan and
Sivasubramaniyan, 2004). Vaidyanathan and Sivasubra-
maniyan (2004) report that in one small river of Tamilnadu,
actual irrigated area is estimated to be 2 to 3 times the
official statistics. Thus, our estimate of irrigated cropland
being twice the official census estimates in the Malaprabha
basin may be reasonable. Further, irrigated area (but not total
cropland area) likely increased over the seven-year period
between the census estimate of 2000 and our estimate in
2007 (Belgaum District, 2007; Thenkabail et al., 2007). The
IWMI estimates of irrigated cropland area matches the census
estimate, and it is their rainfed cropland area which is
significantly underestimated compared to the census.
However, given the discrepancy in total cultivated area and
the foregoing discussion about census estimate of irrigation
being typically underestimated, we believe that IWMI may be
underestimating both rainfed and irrigated cropland area.
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Figure 5. Average spectral signatures (showing one standard deviation on either side of
the mean) of the ground data points for the four agricultural classes at each imagery
date. SR – single rainfed; FI – Full-year irrigated.
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IWMI’s higher forest area estimate can be partly
explained by the fact that it is not a pure class in their data
set, but includes mangroves and riparian vegetation. How-
ever, our field investigation shows that the large areas
mapped as riparian vegetation by IWMI along the river are
actually irrigated agriculture (which lends support to our
suggestion that IWMI may have underestimated irrigated area
in the basin). Also, our forest cover estimate heavily relied
on the 6 m resolution KSRSAC map, which we checked
against high-resolution Google Earth™ images for forest cover
where available and found to be reliable.

Finally, our estimate of grassland area is much lower
than IWMI’s. IWMI’s grassland class is again not a pure class
and includes barren land, scrubs/hilly vegetation, and other 

land-use/land-cover. However, this alone cannot explain the
discrepancy between our estimates because most of the
basin is cultivated or in forests as shown in Table 7, and
there is not a significant amount of other land cover in the
basin. Moreover, our grassland estimate may be robust given
our use of multi-temporal data, which substantially
improved its separability from other classes when compared
to using any single image alone.

Overall, the IWMI study (Velpuri et al., 2009) presents
the best available alternate data set for intercomparison. But
major caveats need to be noted. First, the IWMI data repre-
sents the year 2000, while our study represents 2007, and
some differences between the two could be simply due to
differences in time periods. However, while our field
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Figure 6. Average spectral signatures (showing one standard deviation on either side of
the mean) of the ground data points for the nine agricultural classes at each of the
three imagery dates. SR – single rainfed; FI – Full-year irrigated; DI – Double Irrigated;
DR – Double Rainfed; SR – Single Rainfed; PR – Perennial Rainfed.
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observations suggest large year-to-year fluctuations in
irrigated areas within the region, no large changes in total
cultivated area, forests, or grassland area are expected over
the seven-year time period. Second, the IWMI region of
interest was �100 times larger than ours, and not fine tuned
for the Malaprabha River basin (for example, they had
significantly less local ground data available). Further, the
use of multi-temporal data adds significantly to processing
time, which would not have been possible in a 200,000 km2

mapping effort such as IWMI’s. Finally, the objectives of their
classification (to examine how estimates of irrigated areas
change with spatial resolution of satellite data) were not the
same as ours (the three specific objectives outlined in the
introduction). The methodology and choice of land-cover
classes were thus different. Despite these caveats, the
intercomparison still provides valuable insights, and sug-
gests that using multi-temporal imagery may improve land-
cover mapping in regions of high temporal variability.

Mapping in Regions of High Spatial and Temporal Complexity and
Resolution
The difficulty in accurately mapping the most detailed
classes (nine-class map) reflects both the spatial and

temporal complexity of the landscape. In particular, small
field sizes, changing field boundaries through time, and
high heterogeneity in cropping pathways contributed to the
mapping challenges.

Crop classes labeled “Other,” which includes vegetables,
chilli, and pulses are typically grown in very small patches.
Moreover, when two or more crops are grown in sequence on
a field, whether irrigated or not, the “second” crop is usually
grown on a subset of the total monsoon-season field due to
lower water availability. Accurately delineating field bound-
aries and collecting sufficient and accurate ground data was
thus challenging for such rare classes, and it is likely that
some or many of these classes included high proportions of
mixed pixels, thus contributing to reduced classification
accuracies. Moreover, due to the high number of different
crops in the region, many of the Other crop classes have high
intra-class vegetation variability, thus further increasing
spectral variability and decreasing accuracy.

Temporal heterogeneity across the landscape was also
problematic. The planting and harvest of Other crops is less
uniform in time than for rice due to the shorter growing
periods of these crops. This is especially the case with
irrigated crops, where planting and harvesting timing is

824 Augu s t  2012 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 4. CONFUSION MATRIX FOR NINE-CLASS MAP

Ground Data (# Pixels)

Single Full-year Double Double Single Double Double Perennial Grassland User’s
Rainfed Irrigated Irrigated Irrigated Rainfed Rainfed Rainfed Rainfed accuracy
(Paddy) (Mostly (Paddy/ (Other/ (Other) (Paddy/ (Other/ (Orchard) (%)

sugarcane) Other) Other) Other) Other)

Single Rainfed (Paddy) 133 1 8 7 0 3 0 0 9 82.6
Full-year Irrigated
(Mostly sugarcane) 0 304 7 21 3 2 18 7 0 84.0
Double Irrigated 
(Paddy/Other) 0 16 12 4 1 7 8 3 1 23.1
Double Irrigated 
(Other/Other) 0 8 2 14 0 1 62 7 16 12.7
Single Rainfed (Other) 0 0 0 19 6 0 4 0 8 16.2
Double Rainfed 
(Paddy/Other) 5 0 3 3 0 1 3 0 68 1.2
Double Rainfed 
(Other/Other) 0 5 0 20 10 7 134 1 14 70.2
Perennial Rainfed 
(Orchard) 0 5 0 0 4 0 0 12 17 31.6
Grassland 2 1 8 8 7 0 4 15 82 64.6
Producer’s 95.0 89.4 30.0 14.6 19.4 4.8 57.5 26.7 38.1
Accuracy (%) Overall accuracy: 60.1%

Kappa co-efficient: 0.517

TABLE 5. TOTAL AREA BY CLASS FOR EACH OF THE THREE CLASSIFICATIONS

Class 3-class (%) 4-class (%) 9-class (%)

Single Rainfed (Paddy) 8.1% 17,836 ha 8.1% 17,836 ha 8.1% 17,836 ha
Full-year Irrigated (Mostly
Sugarcane)

16.1% 35,452 ha 16.1% 35,452 ha 16.1% 35,452 ha

Double Irrigated (Paddy / Other) 57.8% 127,276 ha 18.7% 41,178 ha 6.8% 14,974 ha
Double Irrigated (Other / Other) 11.9% 26,204 ha
Single Rainfed (Other) 39.1% 86,098 ha 1.9% 4,184 ha
Double Rainfed (Paddy / Other) 3.6% 7,927 ha
Double Rainfed (Other / Other) 14.2% 31,268 ha
Perennial Rainfed (Orchard) 7.3% 16,075 ha
Grassland 12.1% 26,644 ha
Water 5.4% 11,891 ha 5.4% 11,891 ha 5.4% 11,891 ha
Cloud 1.4% 3,083 ha 1.4% 3,083 ha 1.4% 3,083 ha
Village/Urban 1.9% 4,184 ha 1.9% 4,184 ha 1.9% 4,184 ha
Forest 9.3% 20,479 ha 9.3% 20,479 ha 9.3% 20,479 ha
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more flexible because farmers are less reliant on natural
rainfall. Rainfed paddy and full-year irrigated crops, on the
other hand, show more temporal coincidence due to plant-
ing with the timing of the rains in the case of paddy or due
to the year-round nature of growth in the case of sugarcane.

Improving accuracy in regions of small field sizes and
high spatial and temporal complexity can of course be
achieved by using higher resolution data (Ozdogan and
Woodcock, 2006), but such approaches quickly become
prohibitive across large regions. Using high-resolution
sampling throughout the basin (e.g., Ellis et al., 2009),
however, may be a potential intermediate solution.

Implications for Estimating Water Use
Agriculture is a major draw on water resources in India,
contributing to 91 percent of total water withdrawals (FAO,
2010), and leading to rapid groundwater depletion in some
parts of the country (Rodell et al., 2009). However, a study
attempting to estimate the efficiency of agricultural water
use in India was hampered by the unreliability of irrigation
data (Vaidyanathan and Sivasubramaniyan, 2004). The
authors concluded that “an independent and objective
estimate of irrigated and un-irrigated areas under different
crops” would be needed for refining their estimates of water
use efficiency, and that “Satellite imagery, which is avail-
able for at least the last 30 years, can be used to compile
independent estimates of irrigated and rainfed crop areas in
different seasons at different points of time.” This study
presents an advance in achieving some of these objectives,
by developing a data set that would be a key input to
analysis of water use in agriculture. By providing separate
estimates of cultivated areas of major crops, of single,
double, and full-year cropping, and of irrigated area, we
would be better able to estimate “green” versus “blue” water
components of the hydrological budget. For example, single
cropped paddy rice, grown during the Kharif season, is a
major user of green water, while full-year irrigated sugarcane
is a major user of blue water, and land surface water balance
models can be used to estimate these components of the
hydrological budget.

Conclusions
The major outcome of this study is to show the potential of
multi-temporal medium resolution satellite imagery to
differentiate cropping types, rotations, and irrigation prac-
tices in regions of high spatial and temporal complexity.
In particular, the results show that it is possible to separate
single-cropped rainfed paddy rice from full-year irrigated
sugarcane, using only three 24 m IRS LISS images (all from
non-monsoon season), with an overall accuracy of 89 percent
and high user and producer accuracies. More detailed land-
cover classifications can also be produced using this method,
although our results showed that increasing detail was
accompanied by decreasing accuracy (74.6 percent and

60.1 percent overall accuracies for four-class and nine-class
maps, respectively). In all cases, using multi-temporal
imagery resulted in substantially better separability (based on
J-M Index) than using a single image alone. The results thus
suggest the need for multi-temporal images to improve
cropland mapping; multisensor-data fusion may offer some
promise to better identify complex classes.

Delineating crops accurately is the most crucial step
in determining crop water use, and our separation of single-
cropped rice from sugarcane thus makes a valuable
contribution toward estimating green water use (by rainfed
croplands) and blue water use (by irrigated croplands).
Despite many years of experience in cropland mapping, large
uncertainties in mapping crop types and cropping water
sources (irrigated versus rainfed versus supplemental) persist.
For example, there were significant differences in croplands
mapped using this study with three IRS LISS 24 m images
compared to the: (a) International Water Management
Institute (IWMI) study which used Landsat 30 m data in
fusion with MODIS 250 m temporal data, and (b) non-remote
sensing census statistics. Some of the differences can be
attributed to differences in: (a) class definitions, and (2) data
source and methods used. But it is clear that to enable
frequent monitoring of fine-scale agricultural intensification
processes and their water use, we need to refine methods
that address important elements of the intensification process
over large areas, without requiring extensive cost, time,
ground data or expertise.
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TABLE 7. COMPARISON OF THE RESULTS OF THIS STUDY TO THOSE OF IWMI
(V ELPURI ET AL ., 2009) AND CENSUS OF INDIA 2001 S TATISTICS . C ENSUS VALUES

ARE AGGREGATED FROM VILLAGE -LEVEL DATA . A S VILLAGE BOUNDARIES DO NOT
COINCIDE WITH THE MALAPRABHA BASIN BOUNDARY , W E SHOW A LOWER VALUE

CALCULATED BY AGGREGATING DATA FROM ALL VILLAGES THAT FALL ENTIRELY
WITHIN THE STUDY AREA (T OTAL VILLAGE AREA OF 1,527 KM2), WHILE THE UPPER

VALUE INCLUDES ALL VILLAGES THAT LIE WITHIN OR INTERSECT THE BASIN
BOUNDARY (2,871 KM2).

This study Velpuri Census of India (2001); 
(LISS-III (2009) Part-B: Village 
24 m) (Landsat amenities directory, 

30m) including five-fold 
landuse data.

Total cropland 69.8% 42.6% 64 to 69%
Rainfed cropland 35.1% 26.8% 49 to 52%
Irrigated cropland 34.7% 15.8% 15 to 17%

Grassland 12.1% 32.8%
Forest 9.3% 21.2%
Village/urban 1.9% -
Water 5.4% 3.4%
Clouds/shadow 1.4% -
Representative year 2007 2000

TABLE 6. SUMMARY OF MAIN FINDINGS : P ROPORTION OF AGRICULTURAL LAND
(P ERCENT OF BASIN ) BY LAND-USE CATEGORY

Water Use Cropping Intensity Crop type

Rainfed 35.1% Single crop 10.0% Paddy 18.5%
Irrigated 34.8% Double crop 36.5% Sugarcane 16.1%

Full-year crops 16.1% Other crops 35.3%
Perennial crops 7.3%
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