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Improved Algorithms for Reservoir Capacity Calculation 
Incorporating Storage-Dependent Losses and Reliability Norm 

SHARAD M. LELE x 

Department of Computer Science and Automation, Indian Institute of Science, Ban•Talore, India 

Two algorithms that improve upon the sequent-peak procedure for reservoir capacity calculation are 
presented. The first incorporates storage-dependent losses (like evaporation losses) exactly as the stan- 
dard linear programming formulation does. The second extends the first so as to enable designing with 
less than maximum reliability even when allowable shortfall in any failure year is also specified. Together, 
the algorithms provide a more accurate, flexible and yet fast method of calculating the storage capacity 
requirement in preliminary screening and optimization models. 

1. INTRODUCTION 

The sequent-peak procedure is a well-known simplistic al- 
gorithm for determining the storage capacity requirement for 
a reservoir [Thomas and Fiering, 1963]. It has also been ex- 
tended to cascaded multireservoir systems in analyses based 
on a dynamic programming approach [Murray and Weiss- 
beck, 1980]. But the procedure suffers from serious limi- 
tations: 

1. Storage-dependent losses or releases cannot be included 
in the calculations. 

2. It cannot be used for complex multireservoir systems. 
3. It cannot be used when less than maximum reliability 

(percentage of periods in which target demand is met) is de- 
sired; specification of the shortfall that may be allowed in any 
failure year is, therefore, out of the question. 

4. It cannot be used when the reservoir operating policy is 
not the standard one. (A standard operating policy (SOP) is 
one under which the seasonal release is equal to the target 
release or all the available water, whichever is less.) 

On the other hand, the procedure has the significant advan- 
tage of not being limited by the number of years and seasons 
of inflows used in the analysis, a factor that is crucial in deter- 
mining practical solvability in analyses based on the common- 
ly used linear programming (LP) formulation [Loucks et al., 
1981, pp. 236-238]. Further (at least in the case of single or 
cascaded multireservoir systems), it enables the analyst to 
tackle problems with significantly nonlinear objective func- 
tions with the help of direct-search optimization methods. 

Some attempts have been made to overcome the short- 
comings mentioned above. Modifications have been easily 
made to enable calculation of capacity for different levels of 
reliability [Loucks, 1976]. Tejada-Guibert [1978] has present- 
ed an iterative algorithm for calculating storage capacity at 
maximum reliability in which evaporative losses are accu- 
rately included and also a half-interval search procedure for 
determining the storage required for a desired reliability. None 
of these algorithms, however, is able to provide for specifi- 
cation of the extent of shortfall that may be allowed in any 
failure or "short" year. 
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In this paper we present two simple algorithms that over- 
come limitations (1) and (3) completely. In part I we describe 
an algorithm that is based on the sequent-peak procedure but 
takes into consideration storage-dependent losses as "exactly" 
as they are included in the standard LP formulation. (Al- 
though they are called "evaporation losses" hereinafter, it 
should be noted that they could be any kind of storage- 
dependent losses or withdrawals.) In part II we show how this 
improved algorithm may be used in a procedure that would 
enable one to calculate the active storage capacity require- 
ment when the reliability norm specifies not only the maxi- 
mum number of failure years but also the allowable shortfall 
in any failure year. Finally, we indicate how the procedure 
may be able to overcome limitations (2) and (4) to some 
extent. 

2. PART I: AN ALGORITHM FOR INCORPORATING 

STORAGE-DEPENDENT LOSSES INTO 

THE SEQUENT-PEAK PROCEDURE 

We begin by defining the notation used. The original 
sequent-peak procedure is outlined in section 2.1, and the al- 
gorithm is then derived from it in the subsequent sections. 

a slope of the area-capacity curve for the reservoir, 
L-1. 

b reservoir water spread at dead storage level,/2; 
A t reservoir water spread at the beginning of time 

period t, L e; 
CU t fixed loss from the reservoir in time period t 

(such as local consumptive use),/2; 
½t average rate of evaporation from reservoir surface 

in period t, L; 
E V t volume of water lost owing to evaporation in 

period t, L 3' 
ICRIT last period in critical sequence of inflows; 
IOVF last period in which the reservoir spilled over 

before encountering the critical sequence of inflows' 
K a approximate active storage capacity of reservoir 

calculated from sequent-peak procedure ignoring 
storage-dependent losses,/2' 

K,•* exact active storage capacity, L 3' 
K t sequential cumulative deficit at the end of period 

t, L3; 
Qt inflow into reservoir during period t,/•' 
R• release from reservoir during period t,/•; 
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S t active storage in the reservoir at the beginning 
of period t, L 3' 

Y total number of years in the inflow sequence' 
S number of within-year seasons that each year is 

divided into' 

T total number of periods in the inflow sequence 
(= YS). 

Note that it is assumed as usual that if t = T then t + 1 = 1, 

i.e., the given set of inflows repeats itself. In other words, the 
sequence of inflows may be looked upon as not a "straight 
line" but a "closed circle." Therefore a phrase such as "back- 
ward from t = t• to t = t2" means (when t 2 > t•) "from t = t• 
down to t= 1 and then t= T down to t=t2" Similarly, 
"forward from t = t• to t = t2" means (when t 2 < t•) "up to 
t = T and then from t = 1 up to t = t2." 

2.1. Sequent-Peak Procedure 

Given the values of the inflows Qt, releases R t, and fixed 
losses CU t (and assuming EV t = 0) for t = 1, ---, T, the mini- 
mum active storage requirement K a can be calculated using 
the sequent-peak procedure as follows. 

Stepl. SetK 0=0. 
Step 2. Fort= 1 to T, calculateK t= max {O, (K t_• + R t 

+ CUt- Qt)}. 
Step 3. If K r - K o, then go to step 4' else if this is the first 

iteration, then set K 0 -K r and go to step 2' else STOP' 
sequent-peak analysis failed because gross utilization is great- 
er than the average inflow. 

Step 4. Ka = maximum {K,} over t = 1,.--, T. 
Note that R t and CU t values are actually given/specified 

only for t = 1 to S; since they repeat from year to year, R t = 
Rt_ s for t > S, etc. 

Evaporation loss in any period t is actually proportional to 
the average reservoir water spread area during that period, 
which in turn depends on the storage levels in the reservoir at 
the beginning and the end of that period, i.e., S t and St+ •. 
Since it is not possible to determine S t without knowing K•, 
the above procedure obviously cannot include any such 
storage-dependent losses. 

2.2. Inclusion of Evaporation Losses 

The manner in which evaporation losses are incorporated in 
the standard LP formulation provides a pointer to the modifi- 
cations required in the sequent-peak procedure. In the LP 
formulation, the area-capacity relationship for the reservoir is 
approximated as 

A t = aS t + b (1) 

(Note that this linearization of the area-storage relationship is 
an approximation that may lead to distortions in some cases, 
but it is nevertheless used very commonly. Our algorithm uses 
the same approximation and so is "exact" only to the extent 
that the LP formulation is.) 

The evaporation loss in any period t is taken to be the 
product of the average reservoir water spread during period t 
and the average evaporation rate for that period. Hence 

EV, = et[(A t + At+ ,)/2] (2) 

Using (1) and (2), one obtains an expression for the evapora- 
tion loss as a function of the active storage volumes' 

EV, = et[a(S t + St+ •)/2 + b] = St(aet/2) + St+ •(aet/2 ) + etb 

(3) 

Now, the original storage-continuity relationship in the 
standard LP model [Loucks et al., 1981, pp. 343-348] is 

St + Qt- Rt- CUt- EVt > St+l t = 1,..., T 

which, using (3), can now be rewritten as 

St(1 -- eta/2) + Qt - Rt - CUt - etb > St+ •(1 + eta/2 ) 

or 

St+ • < [St(1-eta/2)+Qt-Rt-CUt-etb]/(1 +eta/2 ) (4) 

The other set of constraints in the LP model that goes 
along with (4) is the set of constraints specifying the minimum 
active storage capacity: 

K•* > S t t= 1,'", T 

(The symbol K•* is used instead of K, to indicate that this 
would be the exact value of capacity required and not the 
approximate one given by the sequent-peak procedure.) This 
constraint, when combined with (4), gives a rule for determin- 
ing S t + •, given S t and Ka*, which is 

St+ • = min {K•*, 

- [(St(1--eta/2)+Qt-Rt--CUt--etb)/(1 +eta/2)] } (5) 

Note that if St+ • is equal to K•*, it indicates that the differ- 
ence between the second term on the right-hand side and K•* 
is the volume of water that has spilled over. 

The question of course is "how can the values of S t and K,* 
be known (when Ka* itself is the basic unknown to be deter- 
mined) ?". We shall now outline the algorithm that shows how 
this can be done systematically. 

The starting point of the algorithm is the fact that if one is 
sure that during a certain period (or sequence of periods) there 
has been no spillover, then for only that period (or sequence of 
periods) 

St+ •=[St(1--eta/2)+Qt-Rt--CUt--etb]/(1 +eta/2 ) (6) 

(which temporarily obviates the need to know K•*). Now, 
there does exist such a sequence of periods within which one 
can be sure that there have been no spillovers, namely, the 
critical sequence of inflows. Further, one knows that (1) the 
active storage at the end of the sequence will be zero (the 
reservoir will be at its maximum draw-down level) and (2) it is 
possible to identify the beginning and end of this sequence 
from the calculations in the sequent-peak procedure. 

The identification of the critical sequence is a simple matter. 
In step 4 of the sequent-peak procedure, all the values of the 
sequential cumulative deficit K t have to be examined. Clearly, 
the value of t corresponding to the largest deficit K t (which is 
then taken as K•) is nothing but the last critical period, say 
ICRIT. Hence from remark 1 above, 

SICRIT + 1 --- 0 

Moreover, the beginning of the critical sequence is the last 
time the reservoir spilled over or "overflowed" before this low- 
inflow sequence was encountered, or going backward from 
t = ICRIT, it would be the first period for which K t = 0. Let 
this period be IOVF. Note that the storage in the reservoir at 
the end of this period as indicated by the sequent-peak pro- 
cedure (say, SiOVF+ •') would be equal to K•. One could then 
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rewrite (6) as 

St=[St+ 1(1 +eta/2)+Rt+CUt+etb-Qt]/(1-eta/2) (7) 

and calculate backward from t - ICRIT to t - IOVF q- 1. 

Note that SlovF+l is the storage volume that should have 
been there in the reservoir at the beginning of the critical 
sequence if the reservoir were to provide for all the releases, 
consumptive losses and exact evaporation losses in that se- 
quence of periods. Hence in general, SiovF + • would be greater 
than SiOVF+ 1' (= Ka), and in fact, it is the desired exact active 
storage, i.e., 

Ka* = SIOVF+ 1 (8) 

This claim, however, needs to be qualified. Since the critical 
sequence could be different for different levels of gross utiliza- 
tion, the inclusion of the evaporation losses may lead to a shift 
in the critical sequence itself. Such a shift would manifest itself 
in a negative value of S t (i.e., a deficit) in some period subse- 
quent to ICRIT. To take care of this possibility, the remaining 
values of S t need to be calculated using rule (5) with Ka* from 
(8) above and checked for negativity. If any S t is found to be 
negative, the sequent-peak procedure would have to be repeat- 
ed with the new (nonzero) values of evaporative losses EVtt 
(obtained using the current values of Sts in (3)); ICRIT and 
IOVF would have to be recalculated and the procedure re- 
peated all over again. 

2.3. Al•lorithm I 

Thus the algorithm may be stated succinctly as follows. 

Step 1: Initialization. 
1. Initialization of Qt, R, e, CU t, a, b. 
2. E V• = 0 for all t = 1,..., T. 
Step 2: Sequent-Peak Procedure. 
1. K o -0. 
2. Calculate K t = max {0, (K t_ • + R t + CU t + EV t -- Qt)} 

for all t - 1,---, T. 

3. If K r = K o, then go to number 4; else if this is the first 
iteration in step 2, then put K o = Kr and go to number 2; else 
STOP: sequent-peak analysis failed because gross utilization 
is greater than the average inflow. 

4. Find the period for which K t is the maximum of all Kt, 
t - 1, .-., T; call this ICRIT. 

5. Search backward from t- ICRIT until K t -0 is en- 
countered for the first time. Assign to IOVF this value of t. 

Step 3: Recalculation. 
1. SlCRIT+ I = 0. 
2. For t = ICRIT + 1 backward to t = IOVF + 1, calcu- 

late S t = [St+ i(1 + eta/2 ) + R t + CU t + etb-Qt]/(1 -eta/2 ). 
3. Ka* = SIOVF+ 1. 
Step 4: Checking. 
1. For t = ICRIT + 1 forward to t = IOVF- 1, calculate 

St+ 1 =min{Ka*, [St(1-eta/2)+Qt-Rt-CUt-etb-]/(1 +eta/2) }. 
2. If any S t is negative, then go to number 3; else STOP; 

Ka* is the required exact active storage. 
3. Calculate EV t- et•a(S t + St+•)/2 + b] for all t = 1, 

ß --, T, and go back to step 2. 

3. PART II: PROCEDURE TO CALCULATE THE ACTIVE 

STORAGE CAPACITY REQUIREMENT FOR DIFFERENT 
LEVELS OF RELIABILITY WITH A SPECIFIC 

DEGREE OF SHORTFALL IN ANY FAILURE YEAR 

In this part a procedure is outlined which enables one to 
calculate the active storage capacity for less than maximum 

reliability when the allowable shortfall in any failure year is 
also specified. 

3.1. Further Notation and Definitions 

In addition to the symbols defined in section 2, we define 
the following: 

f number of failure years allowed; 
d reliability (expressed as a fraction); 
•z fraction of normal yield desired in a failure 

year (= 1 - maximum allowable fractional shortfall); 
Rt* target release in period t l-L3]. 

Given the desired degree of reliability d, the allowable number 
of failure years can be calculated using the definition of reli- 
ability: 

Therefore 

d = (Y --f)/(Y + 1) 

f=rnd {Y-(Y+ 1)d} 

where rnd means rounded off. So, the actual set of releases 

should be R t = •zRt* for all the within-year periods in a failure 
year and R t = Rt* for all other periods. 

In the LP formulation that allows for less than maximum 

reliability, the identification of the actual failure years has to 
be done by trial and error, since the critical years are not 
known beforehand [Loucks et al., 1981, pp. 348-349]. Now, 
however, using the algorithm from part I, we can identify the 
critical years dynamically, i.e., during the calculation itself, and 
modify or "reset" the releases for those years to lower values. 

3.2. Procedure II 

Step l. Set R t = Rt* for all t = 1,---,T. 
Step 2. Execute "modified" algorithm (of part I of this 

paper) to determine Ka* and ICRIT for current set of releases 

Step .3. If this is the (f + 1)th iteration (i.e., if releases have 
been "reset" forf years), then STOP; else go on to step 4. 

Step 4. From ICRIT, determine the current critical year, 
say ICY. If ICY is the same as for the last iteration, then reset 
R t = •zRt* for t corresponding to periods in year previous to 
ICY; else reset R t = art* for t corresponding to periods in the 
ICYth year. Go back to step 2. 

Sometimes the critical period happens to be the first season 
of the "wet" year immediately following a drought sequence. 
In such a case it is customary to choose the last year of the 
drought sequence as the critical year rather than the wet year 
to which ICRIT belongs. 

Thus it is possible to generate a complete and accurate 
"family" of storage-yield curves for a set of inflows of any 
length. Clearly, the above procedure could be modified easily 
so as to reset the releases for one season at a time rather than 

for all the seasons in a year at once. It can also be easily 
altered to suit the concept of providing secondary yields of 
less than maximum reliability (in addition to a firm yield with 
maximum reliability) as outlined by Loucks [1976, pp. 168- 
169] or Loucks et al. [1981, pp. 350-351]. 

4. CONCLUDING REMARKS 

The algorithm for incorporating storage-dependent losses 
was tested on a real 50-years and 12-months inflow sequence 
and was found to give the same results as those obtained by 
using the LP formulation to the last significant digit. The 
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second procedure was also implemented as a computer pro- 
gram; it provided a very quick and flexible way of accurately 
determining the effect of changes in the reliability norm, in- 
cluding in the percentage shortfall allowed, on the storage 
capacity requirement. 

Some remarks may be pertinent here as to the usefulness 
and scope of the algorithms. First, the inclusion of evapora- 
tion losses is itself of significance, because although the 
average annual evaporation loss may be only about 6-10% of 
the storage capacity of the reservoir, the difference in the stor- 
age capacity requirement as calculated before and after the 
inclusion of evaporation losses is usually much higher, with 
the magnitude of the increase depending on the length of the 
critical sequence. (For example, this increase was 30% in the 
case of the same inflow data mentioned above.) Consequently, 
a reasonably accurate estimation of the evaporative losses is 
necessary for the accurate estimation of the active storage 
capacity requirement, especially at sites with high rates of 
evaporation. 

Second, although we have developed the algorithms for the 
case when the reservoir operating policy is the SOP, they 
could be used (with minor modifications) under other oper- 
ating policies, too. For instance, a very general S-type linear 
decision rule (LDR) of the kind 

R, = csS , + d s 

(subscript s denotes that the decision parameters are different 
only from season to season, not year to year) could be incor- 
porated easily by substituting (c + e,a/2) for (e,a/2) and 
(d + be,) for (be,) in the statement of the algorithm in section 
2.3. Similarly, it should be possible to incorporate an SQ-type 
LDR. Since LDRs have not been found to be very appropriate 
for reservoir capacity screening models [Stedinger, 1984], this 
may not be a very useful avenue for further exploration; 
nevertheless, it serves to demonstrate the inherent flexibility of 
the algorithms. A more useful extension would be one 
whereby a "less than 100% minimum storage reliability" 
could be incorporated; resetting R, to (R,* -- Smin) rather than 
0•R,* in step 4 of procedure II for ff number of periods (where 
Smi n is the minimum active storage requirement that may be 
violated /• fraction of the time; if= rnd {YS/•}) should 
achieve that. 

Any algorithm that calculates K,* directly obviates the 
need to include the 2T constraints (T constraints for storage 
continuity and T for minimum storage) and the T variables 
(corresponding to the storage in each time period) in the reser- 
voir capacity optimization problem. It is this large number of 
constraints and variables that imposes significant limits on the 
size of the LP problem that can be solved practically (and 
forces analysts to look for alternatives to the "complete" 
model like the "critical sequence of years" model or the "ap- 
proximate within-year and over-year separated sequences" 
model [Loucks et al., 1981, pp. 343-348]). Conversely, our 
algorithms, with their very small computational requirements 
and their "self-contained" form, could be used for solving 
models with a very large number of periods and even in multi- 
reservoir models. 

Further, since the remaining constraints and variables are 
much fewer in number (typically involving only the within- 
year releases, the active storage capacity, and related con- 
straints), it is possible to solve nonlinear problems using 
direct-search methods for constrained nonlinear optimization, 

with the storage capacity being calculated at each point in the 
search using one of our algorithms. For example, for a single- 
reservoir 100-year and 12-month model, if the objective func- 
tion is nonlinear (say, because of a nonlinearly varying dam 
cost), the LP approach requires the use of a piecewise linear 
approximation and integer programming; the problem would 
then be of more than 1200 variables and more than 2400 

constraints. Instead, one could use algorithm I and pose the 
problem as one in which only the monthly releases are the 
decision variables. This would reduce the problem to a 12- 
variable (and maybe 12 bounds) problem; existing com- 
puterized algorithms can solve nonlinear constrained opti- 
mization problems of this size quite rapidly. (See Lele [1986, 
chap. 3] for such an application.) Since the algorithm calcu- 
lates the values of S, for all t, it could be used even in the case 
of a hydropower generation model wherein the objective func- 
tion is nonlinear because the generation head is a function of 
the storage level. 

When specifying the minimum reliability norm for water 
resources projects, decision-making bodies often also specify 
the extent of shortfall that may be allowed in any failure year. 
For instance, the Planning Commission in India specifies that 
the reliability of hydropower and irrigation projects may not 
be less than 90% and 75%, respectively, and the shortfall in 
any failure year may not be more than 15-20% (Y. D. Pendse, 
Central Water Commission, New Delhi, personal communi- 
cation, 1985). The LP formulation uses chance-constrained 
models for such problems, which require the estimation of the 
cumulative distribution functions for the seasonal inflows; 

they also usually do not specify the extent of shortfall. Rather 
than go through these complex calculations, planners often 
prefer to design approximately. In doing so, they err on the 
side of overdesigning, i.e., for excessively high reliability and 
low shortfall. Calculations show that the difference between 

the storage capacity requirements at, say, 99% and 90% reli- 
ability could be very significant; for the inflow sequence men- 
tioned above, it was 30%. Similarly, exact consideration of 
shortfall could also affect the storage capacity calculation sig- 
nificantly. Overdesigning could turn out to be quite costly, 
especially when one considers the environmental impacts of 
land submergence. Procedure II provides a simple, fast, and 
accurate method for recalculating the capacity and thus for 
examining the tradeoffs between reliability and economic 
and/or environmental costs. 
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